Pepperell Crank Up

10 July 2011

Slide show >> HERE and video here >>

Hooray! At last a weekend day that is bright and sunny.  What a welcome change.

This collection of various electrical and mechanical devices are meant to demonstrate a variety of principles. They were displayed by Earl Russell of Groton MA.  Earl has generously taken time to write up the following descriptions of the devices.  Thank you so much Earl!

DSC00419.jpg (157656 bytes)  The main item in the picture is an electric fly ball governor speed control. The same principle as the governor used to control RPM in most steam engines. Upon acceleration the weights swing the arms out drawing a free moving collar up the shaft. The collar is connected to a light dimmer control by two lines run over pulleys. As the shaft speeds up, the collar rises and the lines connected to the light dimmer reduce the current decreasing rotational speed. Speed may be controlled by weight and position of the balls and by the attachment to the dimmer control. The tension on the spring that brings the dimmer into the full on position may also be varied.

DSC00420.jpg (202237 bytes)  The item on the right is a typical Geneva drive. If seen from the front side the mechanism shows a positive locking switch. The Geneva shown is a four position system. The benefit of the drive is that the driving shaft turns the output shaft into one of four positions in about 25 to 30 degrees of circular motion. The additional circular motion of the input shaft locks the output shaft from any further rotation. This is a particularly good device in setups subject to lots of vibration. Don’t attempt to construct a Geneva unless you have a miller and a rotary table.

The device with the orange fly wheel is what I refer to as an electric "one lunger". When a small pin rotating with the shaft hits a brass brush assembly the solenoid is activated and turns the flywheel. The brush assembly is a piece of thin brass sheet bent in such a way that the pin contacts it at the proper point of rotation to keep the engine turning. The brass brush is bent in such a way that the amount of revolution with the pin connected can be varied setting the speed. The barely visible brass loop seen at the top of the device controls the contact period and hence the speed.

DSC00421.jpg (196010 bytes)  Another example of a simple electric motor uses four small pieces an iron rod placed at 90 degrees on a brass cross. As the armature turns, a brush contacts a pin closing the circuit to the magnetic poles. The iron slugs are in position at closure that draws them to the poles. As the slugs reach the poles the circuit is interrupted and the flywheel effect rotates the shaft until the pin again excites the poles at the right position for the next slugs. A large flywheel would smooth out the rotational jitter.

DSC00423.jpg (180057 bytes)  DSC00424.jpg (235016 bytes)  These two pictures show a radio loose coupler used in early reception. When these devices were used there was no such thing as an amplifier. The signal had to be detected strictly from the level received.

As there was very little selectivity in the early sets it was essential to get maximum detection of the desired signal. To do this the impedance of the primary and secondary coils was made variable. To this end the number of active turns in both coils was made adjustable. One control on the secondary coil allowed a coil change of ten turns while another allowed one turn changes. The number of active turns in the primary was also made adjustable. For maximum power transfer the source impedance must match the load impedance. The primary impedance should be adjusted to match the impedance of the antenna system while the secondary impedance should match the detector load. Coupling between the primary and secondary was varied by inserting the primary coil inside the secondary coil by selected amounts. If the coupling was too tight signals could not be separated. If too loose, insufficient energy would be taken in. Tuning a receiver was not a trivial operation.

To complicate the problem, the received signal had no intelligence or modulation. The signal was a series of broken continuous wave bursts. To create a useful signal a "ticker" was introduced between the detector and the headset. This device chopped the continuous wave signal at an audio rate, generally around 700 cycles. The detected continuous wave signal was now received as an audio note. It was now possible to employ Morse code in communication.

DSC00425.jpg (189702 bytes)  

DSC00427.jpg (123468 bytes)  This mechanism is known as a "Hooke’s Coupler". It can transmit rotary motion between two shafts at any angle up to 90 degrees. As the input shaft is rotated the bent pins move in and out of the holders rotating the output. The coupler shown here has a transmission angle of 37 degrees. The holes must be very accurate to allow smooth rotation requiring precision machining.

DSC00428.jpg (159087 bytes)  In the early days of radio many different materials and mechanical devices were tried to improve detection. The Gelena crystal and the cat’s whisker were known to most crystal radio builders. Less known were other crystals and a setup using a fine platinum wire barely touching the surface of a cup of acid. Carborundum was found to rectify if under sufficient pressure. The device shown was such a clamp with a spring in the bottom of the enclosure and a torque screw adjustment for the upper plate.

In the background of the picture is a work in progress. A turbine wheel built by soldering pennies to a disk is to be driven by a nozzle. The energy to power this nozzle will be a steam generator. The small DC motor removed from an old tape recorder makes a very linear generator.

DSC00429.jpg (224483 bytes)  DSC00430.jpg (202507 bytes)  DSC00431.jpg (312416 bytes)  DSC00433.jpg (278082 bytes)  DSC00434.jpg (280531 bytes)  DSC00435.jpg (237080 bytes)  DSC00436.jpg (379804 bytes)  DSC00437.jpg (354625 bytes)  DSC00438.jpg (339590 bytes)  DSC00439.jpg (302052 bytes)  DSC00440.jpg (310022 bytes)  DSC00441.jpg (174976 bytes)  DSC00442.jpg (321419 bytes)  DSC00443.jpg (298672 bytes)  DSC00444.jpg (334763 bytes)  I bought a raffle ticket to win this tractor, which I need like a bass needs a bicycle.

DSC00445.jpg (384792 bytes)  DSC00446.jpg (283239 bytes)  DSC00447.jpg (336712 bytes)  DSC00448.jpg (315655 bytes)  DSC00449.jpg (327456 bytes)  DSC00450.jpg (356192 bytes)  DSC00463.jpg (311600 bytes)

DSC00451.jpg (237360 bytes)  DSC00452.jpg (274886 bytes)  DSC00453.jpg (259369 bytes)  DSC00454.jpg (144891 bytes)  DSC00455.jpg (183272 bytes)  DSC00456.jpg (211454 bytes)  DSC00457.jpg (171338 bytes)  DSC00458.jpg (154274 bytes)  DSC00459.jpg (152262 bytes)  DSC00460.jpg (184775 bytes)  DSC00461.jpg (151773 bytes)  DSC00494.jpg (205010 bytes)  Russ Steeves' beautiful Fitchburg Northern

DSC00462.jpg (228054 bytes)  DSC00464.jpg (340076 bytes)  DSC00465.jpg (273622 bytes)  DSC00467.jpg (135313 bytes)  DSC00468.jpg (246676 bytes)  DSC00469.jpg (170116 bytes)  DSC00470.jpg (246039 bytes)  DSC00472.jpg (186841 bytes)  DSC00473.jpg (304810 bytes)  DSC00474.jpg (362164 bytes)  DSC00475.jpg (166086 bytes)  DSC00476.jpg (202825 bytes)  DSC00477.jpg (313480 bytes)  DSC00478.jpg (365071 bytes)  DSC00479.jpg (182331 bytes)  DSC00480.jpg (198553 bytes)  DSC00481.jpg (191033 bytes)  DSC00482.jpg (242383 bytes)  DSC00488.jpg (178204 bytes)  DSC00489.jpg (346528 bytes)  DSC00490.jpg (304959 bytes)  DSC00491.jpg (373890 bytes)  DSC00492.jpg (364507 bytes) 

DSC00483.jpg (274056 bytes)  DSC00484.jpg (226160 bytes)  DSC00485.jpg (211531 bytes)  DSC00486.jpg (159846 bytes)  DSC00487.jpg (167068 bytes) 

DSC00493.jpg (276381 bytes)  DSC00495.jpg (308024 bytes) 

Return to NEMES homepage